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Asymptotic Procedure for Solving Boundary Value 
Problems for Singularly Perturbed Linear 
Impulsive Systems 

D.  D.  Bainov, 1 M.  A. Hekimova,  l and V. M.  Veliov I 

Received August 12, 1988 

A justification is given of an asymptotic method for solving a boundary value 
problem for a linear singularly perturbed impulsive system of differential 
equations with fast and slow variables. 

1. INTRODUCTION 

Singularly perturbed systems often arise in mathematical modeling due 
to the presence of "parasitic" parameters such as small time constants, 
masses, capacities, etc., multiplying some of the time derivatives [see, e.g., 
the survey by Kokotovi6]. The method of the boundary-layer functions 
(BLFM) (Vasileva and Butuzov, 1973) is a powerful tool for the alleviation 
of the high dimensionality and the ill-conditioning of such systems. The 
main aim of this paper is to show that an appropriate modification of BLFM 
is applicable to singularly perturbed impulsive systems. 

Impulsive differential equations represent an effective mathematical 
apparatus for the investigation of real processes which during their evolution 
are subject to short-time perturbations. The study of these equations began 
with the work of Mil'man and Myshkis (1960) and has been extended in 
various directions related to their applications in physics, biology, radio 
engineering, automatic control, etc. Periodic singularly perturbed impulsive 
systems have been investigated by Hekimova and Bainov (1985, 1986). 

In this paper we consider a boundary value problem for a linear 
singularly perturbed system containing stable and unstable "fast" subsys- 
tems. The boundary conditions and the impulses (acting at fixed moments 
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of time) depend linearly on the state. Problems of this type arise in the 
treatment of optimal control problems for singularly perturbed systems 
(without impulses) when the objective function contains extra-integral 
terms. The mathematical formulation of such a problem is given in Section 
2 together with its reduction to the boundary value problem studied in the 
following two sections. Section 3 presents the formal asymptotic expansions 
composing the solution and Section 4 is devoted to their convergence. 

2. STATEMENT OF THE PROBLEM 

Consider the following optimal control problem: 

l l 

X (0.5 P~x(t,)+p,, x(t ,))+ e • (0.5 S,@(t,)+ s,, ~(6)) 
i = l  i = 1  

+ ((0.5 M ( t ) x ( t ) + m ( t ) ,  x(t))+(0.5 N ( t ) u ( t ) + n ( t ) ,  u(t))) dt ~ min 

(1) 

-'c = Fll( t)x + F,2(t) ~b + Ei( t)u + gl(t), 

8y = F21 (t)x + F22(t)@ + g2(t), 

x(0) = Xo 

~,(0)  = ~o 

where (x, ~)~  R m,• is the state vector, u ~ R r is the control parameter, 
Fo, gi, El ,  M, m, N, and n are continuous matrix- or vector-valued func- 
tions, and Pk, Pk, Sk, and Sk are matrices or vectors with appropriate 
dimensions, i , j = l , 2 ,  k = l ,  I. The final time T, the initial conditions 
(Xo, r and the moments h , . . . ,  tt E (0, T], tt = T, of trajectory penalization 
are fixed. Here e is a "small" positive parameter which represents the 
singular perturbation. 

If  the matrices Pi, S~, and M(t )  are nonnegatively definite and N ( t )  is 
positively definite (i = 1, l, t ~ [0, T]), then there exists a unique solution 
(u( . ) ,  x(-) ,  i f( . ))  of the above problem in the control space L~ [0, T]. 
Moreover, this solution can be represented as 

u( t ) = N - l (  t)( E*( t)y( t ) + n( t) ) (2) 

where y( .  ) together with an appropriate function ~(.  ) satisfies the adjoint 
equation 

~= - F * ( t ) y - 1 F * 2 1 ( t ) ~ + M ( t ) x ( t ) + m ( t ) ,  y(T)  =0  

(3) 

= F*12(t)y _ 1  FE*2(t) ~ ~(T) = 0 
e 
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and the transversality conditions 

A y( tt) = Ptx( t,) + Pt 

A~(t,) = e(St@(tt) + st), i = 1 , 1  
(4) 

This means that y ( . )  and ~ ( . )  are differentiable and satisfy (3) on each 
interval (tt-1, tt), i = 1, l (to = 0), and (4) at the points t;, where Af( t )  denotes 
the difference f ( t  + 0 ) - f ( t -  0). Replacing ~ by rl = ~ / e  and substituting 
(2) in the differential equation in (1), we obtain a boundary value problem 
with impulses for the optimal trajectory (x ( . ) ,  ~( .  )). Using (4) for i = l as 
a terminal condition, we come to a problem of  the following type: 

YC=Al( t )X+Bl( t )y+Cl( t )@+Da(t )r l+f l ( t ) ,  ty  ~ tt 

y=A2(t)x+B2(t)y+C2(t)@+D2(t)rl+f2(t), t #  ti 
(5) 

e(b=A3(t)x+B3(t)y+C3(t)@+f3(t), t # t ,  

e~ =A4( t )x+B4( t )y+D4(t )r l+f4( t ) ,  t #  tt 

Ay(tt) = Ptx(t,) +p, (6) 

Arl(tt) = St~b(t,) + s~ 

x(O, ~) = Xo, 4,(o, e )  = 4,o 

y(T, e)= Prx(T)+pr ,  rl(T, e) = Sr~b(T)+sr 
(7) 

Henceforth we suppose more generally that X~.~ m', yERm2,~E 
R"~, rl ~ R"4 and all matrix- and vector-valued functions in (5)-(7) are of  
appropriate dimensions. As above, h , . . - ,  tp ~ (0, T), Xo, ~bo are fixed initial 
conditions, and e > 0 is a "small" parameter. 

We shall use the following notations and assumptions. 
For x = (xl . . . .  , xq) e R q and A = {a~j} c R qxr we set 

Ix l  = m a x  Ix, l, I a l  = m a x  laol 
l~i~--q l ~ i ~ q  j = l  

By Cq[0, T] we denote the space of  all q-dimensional functions w( . )  such 
that w(. ) is continuous at each t c [0, T] \ { t i , . . . ,  tp} and there exist finite 
w(tt+O) and w ( t t - O ) = w ( t t ) , i = l , . . . , p .  A norm in Cq is defined by 
sup{tw(t)[ , t~ [0, T]}. 

Assume that: 
A1. For some n - 0  the matrix-valued functions At, B~, i =  1,4, C~, 

i = 1, 3, and Dr, i = 1, 2, 4, are (n + 1)-times continuously differentiable 
in [0, T]. 
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A2. The eigenvalues of the matrix C3(t) have negative real parts, i.e., 
Re o'(C3(t)) < 0, and the eigenvalues of the matrix/94(t) have positive real 
parts, i.e., Re o'(D4(t)) > 0. 

A3. The functions fj(t) ~ ~,,j[0, T)( j  = 1, 4). 
A4. The matrices E + P~, E + St (i = 1, p) are nondegenerate. 
Observe that if Re o'(F22(t))<0 and all the functions in (1) are 

sufficiently smooth, then our assumptions concerning the optimal control 
problem (1) imply the properties A1-A4 of the corresponding boundary 
value problem (5)-(7). 

Consider the homogeneous system 

where 

~1 = A,(  t)v, +/~,(t)v2 

/)2 = A2(t)v, +/~2(t) v2 

avz( t~ )  = P, vl( t,) 

(8)  

Aj( t) = Aj( t) - Cj( t)C31( t)Aa( t) - Dj( t)D4i( t)A4( t) 

Bj(t) = Bj(t) - Cj(t)C~l(t)B3(t) - Dj(t)D41(t)B4(t) (j  = 1, 2) 

Denote by V(t, s) [ V(s, s) = E] the fundamental matrix of system (8) 
and write it down in the form 

V ( t , s ) = ( V l l ( t ' s )  V12(t,s)) 
\ V~l(t,s) v=(t,s) 

where Vq(t, $) is an (m~ x mj) matrix (i , j  = 1, 2). 
We shall use the following assumption as well. 
A5. The matrix PTV12( T, 0) - V22( T, 0) is nondegenerate. 
We shall note that the matrix V(t, s) can be represented in the form 

rl)(t,s), ti<s<--t<--ti+l (i = 0 ,  p) 

Fk+l 1 v(t, t,)Lf[= ' (E + Pj)v(tj, tj_,) (E + Pk)V(tk, S) 
V( t, s) = 

t k - l < S < t k < 6 < t < t i + l  ( k = l , p - 1 ;  i=2,  p; k < i )  

v(t, ti)(E+P~)v(ti, s), 6_l<S<-t i<t<t i+l  ( i = l , p )  

where to = 0, tp+l = T,/5 i = (o o), and by v(t, s) we have denoted the funda- 
mental matrix of the system without impulses corresponding to system (8). 

In Section 4 we shall prove that problem (5)-(7) has a solution r(t, e) = 
(x(t, e), y(t, e), ~b(t, e), r/(t, e)). Moreover, we shall find an approximation 
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Rn (t, e) of the solution such that 

I lg.( ' ,  e ) - r ( . ,  ~)11--- CEn+l 

The approximation Rn(t, e) will be constructed in the form 

Rn(t, e )=  ~. ek[Fk(t)+II<kOr(zi)+Q~ki)r(o',)], t~  (t,, t,+l] (9) 
k=O 

where Fk(" ) is the solution of an appropriate lower order boundary value 
problem and r I ( i ) r (  �9 ) and Q(ki)r( �9 ) are the solutions of appropriate "boun- 
dary layer equations" which are also lower dimensional and represented 
in the "stretched" time scales 

t - ti t - ti+l 
~'~= , o ' i -  , t~ ( t i ,  ti+~), i = O , p  (10) 

E E 

3. ASYMPTOTIC PRESENTATION 

We shall search for a formal asymptotic representation of the solution 
r(t, e) of problem (5)-(7) in the form 

r ( t , e ) = r ( t , e ) + H ( i ) r ( % , e ) + Q ( i ) r ( o ' i , e ) ,  t i < t < t i + l  (11) 

where 

F( t ,e)= ~ ekFk(t), t~[0, T] (12) 
k=O 

n")r(~,, ~)= ~ ~kn(k')r(~-,), (i=O,p) 
k=O 

(13) 

q(~ e )=  ~ ekQek')r(~i) , 
k=O 

where % and o-; are given by (10). 
The coefficients in the expansions (13) are called boundary functions. 

On them we impose the additional condition 

II(kor(+oo) =0, Q(ki)r(-oo) =0  (i = 0, p) (14) 

Setting e = 0 in (5), we obtain the so-called reduced system 

. ~ = . ~ l ( t ) g + B l ( t ) y + f l ( t ) ,  t # t ,  

y = A t E ( t ) Y , + B z ( t ) f + f 2 ( t ) ,  t #  ti 

tff = - -  C 3 1 ( t ) [ A 3 (  t):~ + B3(t)y +f3( t)], 

"77 = - D 4 ~ (  t )[A4(t)g + B4( t )y+ f4(t)], 
A)7(ti) = P,~( t~) + p, 

where we have put 

J](t) =fj( t)  - Cj( t)C31( t)f3( t) - Dj( t)D41( t)f4( t) 

t #  t i 

t Y ~ t i 

(j  = 1, 2) 

(15) 

(16) 
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The assumption A5 implies the existence and uniqueness of the solution 
( ; ( t ) , )7( t ) ,  ~(t),  fi(t)) or (15), (16) satisfying the boundary conditions 

; (0)  = ;o, y(T)=PT;(T)+~T (17) 

and the relations 

for the impulses, 
Moreover, this solution can be represented as 

Io ; ( t )  = Vl~(t, O);o+ v~(t,  O)~o+ [ V~l(t, s ) f , ( s )+ v,~(t, s)f~(s)] ds 

+ Y~ Vtl(t, t~+O)a~+ Y~ V~2(t, t~+O)b~ 
O<tv<t O<tv<t 

Io )7(t) = V2i(t , 0) ;0+ V22(t, 0))70+ [ V21(t , s)f,(S)+ V22(t, s)f2(s)] ds 

+ E V2,(t, t~+0)+  Y. V22(t, t~+O)b~ 
0< t~< t  0 < t v < 0  

~( t) = - C3~( t)[ A3( t);( t) + B3( t))7( t) + f3( t) ] 

~( t) = - D;l(  t)[ A4( t)s t) + B4( t))7( t) +f4(t)] 

where 

)70 = --[PTV,2(T, 0 ) -  V22(T, O)]-'{[PTVll(T, 0)- V21(T , 0 ) ] ;  o 

I: + {[PTVll(T, s ) -  Vn(T , $)]fl(S) 

+ [ PTV12( T, s) - V22(T, s) ]f2(s)) ds 
P 

+ X {[PTVn(T, t ~ + 0 ) -  V21(T , t~+O)]a~+[PTV,2(T, t~+0) 
v = ,  

- V22(T, t~+O)]b~}+pr} 
For the sake of convenience, we shall also use the notations 

A;(t ,)  = a,, A)7(ti)=Pis (18) 

where al, s bi, and /~r are arbitrarily fixed vectors. 

z= x , ~= , A( t )=kA2(t)  BE(t)] Y 

c(t)=(c,(t) B3(t)  
\C2(t) D2(t)]' \A4(t) B4(t)] 

(f '(1))), F(t) (f3(t)~ 
D(t)=(C3(ot) D40(t)) ' f ( t )=k f2(  =\ f4( t )]  

,~( t )=(~, ( t )  Bl(t)~ ( f , ( t )~ F ( t ) = - D - ' ( t ) F ( t )  
\A2(t) /~2(t)]' f ( t )  = \ f2(t)] '  

(19) 
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Substitute (11) into (5)-(7), representing t in the coefficients of system 
(1) in front of the functions II(k0r(ri) in the form t = ti + eri and in front of 
the functions Q(k0r(tr~) in the form t = ti+l+ errs. Afterward we expand the 
functions Aj( ti + er Aj( ti+l + eo'i), Bj( ti + er Bj( ti+l + eo'i) ( j = i , 4 ) ,  
Cj(t~ + er Cj(ti+l + eo'i)(j = 1, 3), and Dj(t~ + er D~(t~+l + er~) (j  = 1, 2, 4) 
in series by powers of e and equate the coefficients at the equal powers of 
e (separately those depending on t, ~'~, T~). Thus we obtain the systems from 
which we can determine the coefficients of the expansions (12), (13). 

For the boundary functions for k = 0 we obtain the systems 

dII(~176 O, dQ(J)z= 0 (20) 
d~'~ d65 

dn(~162 c3(t,)n(o~ (21) 
d~'~ 

dII(o')n 
= D 4 ( t , ) I I ( o 0 * /  ( 2 2 )  

dTi 

dQ(~176 @= C3( t,+,) Q(o~ qt (23) 

dQ(~ --  D 4 ( t i + l )  Q(oi)'q ( 2 4 )  

Since II(o~176176 from (20), (22), 
(23), in view of (14), we obtain 

�9 II(o')Z(r,)= II(o~ Q(o')Z(O',)= Q(o'hp(tr,)=0 ( i=0 ,  p) (25) 

For the function ~o(t) = (So(t), (o(t)), applying (14) and (25), we obtain 
the system 

Zo = ,4(t)~o+ f ( t ) ,  t # t~ 
f fo=B(t )go+f( t ) ,  t~t~ (36) 

A~0(t,) = 0, A)Vo(t~) = P, go(t,)+p, 
with boundary conditions 

~o(0) =Xo, )~o(T) = Pr~o(T)+pr (27) 

Problem (26), (27) has a unique solution (~o(t), fro (t) ), since it coincides 
with problem (15), (17), (18) for a~ =0,  bi=p~, s  

For the initial conditions of the functions H(o~ and Q(o~ we 
obtain 

H(o~ = ~ , -  ~,(0), II(o')~(0) = -A~o(/,) (i = 1, p) (28) 

Q(o~ = A~o(ti+~) - Si+l~o(ti+l) - Si (i = O, p -- 1) 
(29) 

Q(o~)~/(0) = Sr~o(T) - 0o(T) + sr 
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Once we have solved problem (26), (27), the initial conditions (28), (29) 
are completely determined. 

We solve systems (21), (24) with initial conditions respectively (28), 
(29) and obtain (i = O,p) 

II(oi)O(zi) = exp[C3(tJri] II(o~ ~-~-0 
(30) 

Q(oi)Tl(ori) ~- exp[Da(ti+l)O'i] Q(oi)7/(O), Or i ~ 0 

Thus, all functions ~o(t), Fl(oi)(zi), and Q(oi)r(o'i) (i = O, p) are completely 
determined. 

In order to find ~k(t), II(kl)r(r and Q(ki)r(cri) ( i=O ,p )  for l<-k<-n 
we proceed analogously. 

For the function ?k(t) = (~k(t), ffk(t)) we obtain the system 

~k=A( t )~ ,k+C( t )D- l ( t )~k_l ,  t #  ti 
(31) 

ffk = - D - l ( t ) B ( t ) Z k  + D - l ( t ) ~ k - 1 ,  t #  ti 
A~k(t i)  = a(k ~), Aik( t i )  = PiXk(t i )+ b(k O (32) 

where we have put 

a(k') = -- II(k')X(O) + Q(k'-Ox(O) 
b(ki)= p i Q ( i - i ) x ( O ) -  1-[ (i)y ( 0 ) +  Q(ki-1)y(O) 

with boundary conditions 

xk(0) = - n~~ 
(33) 

ilk(T) = PT[Xk( T) + Q(kV)X(0)] - Q?)y(O) 
For the boundary functions we find the systems 

dII(k~ = T(kO(Z~), dQ(k~ G(ki)(cr~) (i = 0. p) (34) 
d~', dori 

d l I  ~')sr- D(tJII~')~" + B(tJn~ ' ) z+ L(k~)(r~) (i = O, p) (35) 
dr, 

dQ(kO~=D(t,+~)Q(kO~+B(t,+~)Q(ki)Z+H(kO(Cr,) ( i=O ,p )  (36) 

where (i = O, p) 

k-lT~ d A(t,) ~ d C( ,) ()  + ()  
r(2)(~,) = sE_o ~., n~_~_,z(~,)  n~_~_,~(~,)  

k--I 0"~ [d~A(ti+,) (i) d'C(ti+,) ] 
G(k0 (tr,) = ,E=o ~ k at ~ Qk-,-lZ(OS)+ dt ~ Q(ki)-s-l~(O'i) 

"r; [ d~B(ti).~(,) , , . d~D(t,) ] 
L~')(~,) = ~,~ V., [ - - 2 ? - " ~ - s : t " J * - - - 2 V  - n~')-~( ')  

A 
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~ (i) dSD(ti+l) (i) ] 
H(ki)(tri) = s=l-S-(. I dt s Qk-sz(cri) -~ dt ~ Qk-~f(tri) 

with initial conditions 

n(~~162 = - r 

II(k')@(O) = --A~bk(t,)+Q(ki-')O(O) (i = 1,p) 

O~kOr/(0) = A~k(t,+l) + H~k~+l)~7 (0) (37) 

--Si+l[tffk(ti+l)+Q(i)@(O)] ( i = 0 ,  p- -1)  

Q(P)~/(0) -- ST(~hk(T) + Q(kP)O(0)) - ~k(T) 

and the initial conditions for the functions II(~ II(k0V(~'i), Q(k0~h(tr~), 
and Q(i)z(tri) are appropriately chosen according to condition (14). 

First we find successively the functions rI(ki)Z(~'i), Q(ki)z(o'~), II(k07/(r~), 
and Q(kO0(o',) ( i=O,p ) ,  

f? L FI~~ = - T(kO(S) as, O~~ = O(k')(s) ds (38) 
i 

I/ II~~ = - exp[D4(t~)(z~ - s ) ]  
i 

x [a4( t , )n~'x(s )  + B,(t,)II~'y(s) + L~i~(s)l as 
(39) 

f2 Q(ki)4'(o'i) = exp[ C3(ti+0(o'i - s ) ]  

x[A3(ti+,)Q(k')X(s)+ B3(t,+l)Q~')y(s)+ H~i,),(s)] as 

where by L~.)l(s) we denoted the vector formed by the last m 4 components 
of the vector L~~ and by H~)~(s) that formed by the first rn3 components 
of  the vector H(ki)(s). 

Making use of  (38), we solve problem (31)-(33) analogously to problem 
(15), (17), (18). Thus, initial conditions (37) are completely determined and 
we find the functions 

= exp[C3(ti)ri] I](ki)~b(O)+ ff' exp[C3(ti)('ri- S)] II~'O(ri) 

• [A3(t , )II~~ + B3(t3rI~~ + L ~ ) l ( S ) ]  ds, r~ >- 0 
(40) 

i 

Q~)n(~i) = exp[D4(t~+l)O~]Q~~ + exp[D4(t~+l)(Cr~- s)] 

x[A4(t,+,)Q(kOX(s)+ B4(t,+I)Q(kOy(s)+ H(ki.)2(s)] ds, cr, <--O 

Thus, the coefficients of the expansions (12) and (13), ~k(t), II~i)r(r~), 
and Q~)r(~r~) (i = 0, p; k =0,  n), are completely determined. 
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From condition A2, formulas (30) and (38)-(40), by induction it follows 
that there exist constants Ko > 0 and K > 0 such that the inequalities 

III ~')r(~',)l- Ko exp(-Kri), ri -> 0 
(41) 

[Q(ki)r(%)l<-Koexp(Kcri), o'i <-O 

hold for i = 0, p, u = 0, n. 
Inequalities (41) imply the convergence of all improper integrals which 

enter the formulas defining the boundary functions. 
Thus, all functions which enter the formal expansion (12) are com- 

pletely determined. In the next section we shall prove that under the 
assumptions A1-A5 the partial sums of the series (12) form uniform approxi- 
mations of the solution of  problem (5)-(7). 

4. EXISTENCE AND APPROXIMATION OF THE SOLUTION OF 
(5)-(7) 

In this section we shall prove the following theorem. 

Theorem 1. Let conditions A1-A5 be satisfied. Then there exist con- 
stants Co>0 and M such that for any e s ( 0 ,  eo) problem (5)-(7) has a 
unique solution r(t, e) and 

Ilr(t, e ) - R . ( t ,  ~)11___ M~ "§ t~[0 ,  T] (42) 

The function R.(t ,  e) in the above estimate is given by (9), and ~k(t), 
II~i)r(zi), and Q~ki)r(~ri) were described in Section 2. 

First consider the singularly perturbed system 

e[J 1 : C 3 ( t ) p  I + g ~ ( t ) ,  t ~  t, 

A p l ( t i )  : C~ i) 
(43) 

eli2 = D4(t)p2+ g2(t), t # ti 

A p 2 ( t i )  = Sip l (  ti) + c(9 i) 

with initial condition 

p,(O, e)=pO, p2(T, e)= SrPl (T)+p  ~ (44) 

where pl ~ R'~, p2 c R mr. 
We shall investigate the problem of existence and estimation of the 

solution p ( t, e) of the boundary value problem (43), (44) under the following 
conditions (B): 

B1. The matrices C3(t ) and D4(t) are continuous and satisfy condition 
A2 for t ~ [0, T]. 

B2. The matrices E + S~ (i = 1, p) are nonsingular. 
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B3. The functions gl(t)~C,,~[0, T], g2(t)e(?m,[O,T], and c~ i), 
c~2 ~ (i = 1,p) are arbitrary m3, m4-dimensional vectors. 

Denote by Y~(t, s, e) [Yl(S, s, e) = E] the fundamental matrix of 
the homogeneous system epl= C3(t)pa, t ~ [0, T], and by Y2(t, s, e) 
[YE(S ,S ,e )=E]  the fundamental matrix of the system elJ2=O4(l)p2, 
t~[0,  T]. 

Flato and Levinson (1963) proved that if condition B1 holds, then the 
matrices Yj(t, s, e) ( j =  1,2) satisfy for sufficiently small values of the 
parameter e the inequalities 

Ig l ( t , s , e ) [<-Klexp  - K  , O<-s<-t<- T 

(45) 

[Y2(t ,s ,e) l<-KleX p K , O<-t<-s<-T 

where K > 0 and K 1 ~ 0 are constants. 

Lemma 1. Let conditions (B) hold. 
Then there exist constants Co> 0 and K > 0 such that for e ~ (0, Co), 

the system (43) with boundary condition (44) has a unique solution 
p(t, e)~ C,,[0, T] [p(t, e) -rPlCt'~)~l This solution satisfies the inequality - -  I, p2( t  , e)JJ" 

IlpCt, e)l[-< g max{llgtl, Ip~ max Ic")l} (46) 
l<_i<_p 

where 

( g l ( t ) ~  O={pO~ c(i, (c~i)~ 
m = m3+ m4, g(t) = \g2( t ) / ,  P \pO], = \c(2i),] 

Proof From the first equation of (43) we find pl(t, e), 

p l ( t , e )=Y1( t ,O ,e )p~+ Ys ( t , s , e )gs ( s )ds+  2 Yl(t , t~,e)c~ ~) (47) 
O<.t~<--t 

From (45) and (47) for IM(t, we obtain the estimate 

Iip,(t, +)11- K3 max{llgdt)ll, Ip~ max Ic 'l} (48) 
l~i<--p 

where K3 > 0 is a constant. 
Consider the function 

p2(t ,e)= Y2(t, T,e)~~ f; Y2(t,s,e)g2(s) ds 

(49) 
- E Y2(t, t~, e)[S~pl(t~)+c(2 ~)] 

t<tv<T 

where pl(t~) ( i = O , p + l )  are defined by (47) and ~ ~ 1 7 6  
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A straightforward verification shows that the function p(t, e) = rob(t, ~)~ \p2(t, e)] 
obtained is a solution of problem (43), (44). Estimate (46) follows from 
(45), (48), and (49). Lemma 1 is proved. �9 

Proof of  Theorem 1. In system (5), (6) we carry out a change of the 
variables by the formulas 

z = u + Z . ( t , e ) ,  r . = v + H . ( t , e )  (50) 

We obtain the system 

f~ = A ( t ) u + P ( t ) [ B ( t ) u + D ( t ) v ] + f l ( t ,  e), t r s t~ 
(51) 

el) = B( t )u+D( t )v+f2 ( t ,  e), t ~  tl 

AUl(ti) = Ol~ i ) ( e ) ,  Au2(ti) = Piul(ti) + a~i)(e) 
(52) 

AVl(ti) = fl~i)(e), Av2(ti) = SiVl(ti)+fl(2i)(e) 

where 

t 1) U = , 13 = 

\ u2/ v2 

P(t)  = C( t )D- l ( t )  

(uj e R % , j =  1, 2, I ) I E ~  m3 , 132E~ m4 ) 

dZ. ( t , e )  
fl(t, e) = A( t )Z . ( t ,  e)+ C(t )H.( t ,  e), 

dt 

dn.(t, ~) 
f2(t, e )= B(t)Z.( t ,  e)+ D( t)H.(t,  e ) - e  

dt 

ce~/'(e) = Pik=o ~ ekII~i-l)x \(ti-t '-l~+e / k=o ~ eklI~i-1)Y ( ~ )  

(53) 
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For system (51), 
conditions 

u~(0, e )=p l ( e ) ,  

v~(O, e) = q,(e), 

where 

(52) from (7) and (50) we obtain the 

u2( T, e) = Pvul( T) + p2( e ) 

v2(T, e) = Srvl (T)+q2(e)  

221 

boundary 

(54) 

From relations (20)-(29), (31)-(37), (41), (53), and (55) it follows that 
for sufficiently small values of the parameter the following inequalities hold: 

IP(t)[<-No, If2(t, e)l<-Nle "+1, t~[0 ,  T] 

( +exp K , ti<t<-ti+l, i=O,p (56) 

I~;)(~)1-<N3~% Ifl~k')(e)l--<N4e "§  k = l , 2 ,  i = l , p  

Ipk( )l-< Iqk(~)l- N6 e"+l, k = 1, 2 

where Nj (j  = 0, 6) are positive constants. 
Consider the set 

T~ = {w: w ~ t~=[0, T], Ilwll-< 8} 

where 8 > 0 is a constant. 
For w c T~ from Lemma 1 it follows that the system 

eh = D( t )h+B( t )w+f2 ( t ,  e), t ~  t~ 
(57) 

Ahl(t~) = (0 •1 (e), Ah2(t~)=S~h~(t,)+fl~~ 

with initial condition 

hi(0, e) = q~(e), h2(T, e) = Srh~(T)+q2(e) (58) 

has a unique solution h(t, w, e) c Cm[0, T]. 
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From relations (46) and (56) it follows that there exist constants eo > 0, 
Lo > 0, and L1 > 0 such that for e ~ (0, eo) the following inequalities hold: 

Ilh(t,w,~)ll<--tollwll+tlE n+a, w~T~ 
(59) 

IIh(t,w',~)-h(t,w",e)ll<--Zol[W'-w"ll, w',w"~T~ 

Consider the operator c~, associating with each function w c T8 the 
unique solution ~ w  of the system 

a=,4(t)a+P(t)[B(t)w+D(t)h]+fl(t ,  e), t~  ti 
(60) 

Aul(ti) = ce~i)(e), At72(tl) = P, al(ti)+ a~2~ 

satisfying the boundary condition 

IJ1(0, e) = pl(e), a2(T, e )  = Pral(T)+p2(e) (61) 

Making use of the solution of problem (15), (17), (18), we write down 
the solution of the boundary value problem (60), (61) in the form 

Io' ~ w =  V(t, s)P(s)[B(s)w(s)+D(s)h(s)] ds+G(t, e) (62) 

where 

fo G,(t, E) = VH(t, O)p,(e)+ Vl2(t, O)a~+ (V(t, s)f~(s, e))l ds 

+ E V.(t. t~+0)~(~)+ 2 Vl~(t, t~+0)o~)(e) (63) 

Q(t ,~)= V~x(t,O)fl(~)+ V~(t,O)a"~+ (V(t,s)f~(s,~))~ds 

+ 2 V~l(t, t~+0),~'(~)+ 2 V~(t, t~+0)o~(~) (64) 
O<tv<t O<tv<t 

a ~ -[PTV,2(T, 0 ) -  V22(T, 0)] -1 

x {PTV, I(T, O) - V2~(T, 0)]p,(e) 

fo + P*V(T, s)P(s)[C(s)w(s)+D(s)h(s)] ds+p2(e) 

+ P*V(T, s)f~(s, e) ds+ ~ P*V(T, t~+O)a (~) 
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where by P *  we have deno ted  the matr ix  (PT, - -E)  of  d imens ion  m2x  
(m 1 q-mE) and by a (~) the vector  

F rom (62), taking into account  that  h(t, w, e) is a solut ion of  system 
(57), we obta in  

fo' Io C~w = e V(t, e )P ( s )h ( s )  d s -  V(t, s)P(s)f2(s,  e) ds+ G(t, e) (65) 

where  by /~ ( t )  for  t =  t~ ( i =  1, p)  we have denoted  h(t~-O). 
We represent  the first addend  in the r ight -hand side o f  (65) in the fo rm 

fo e V(t, s )P ( s )h ( s )  ds 

;o" = e V(t, s)P(s)I~(s) ds (66) 

+ ~, e V ( t , s )P( s ) l~ ( s )+e  V( t , s )P(s) l~(s)  ds 
i = l  k tk 

where  0 < t~ < .  �9 �9 tk < t <--- tk+, <-- T. 
After  an integrat ion by  parts  f rom (66) we obtain  

Io e V(t, s)P(s)l~(s) as 

k 

= e P ( t ) h ( t ) - e V ( t ,  0 ) P ( 0 ) h ( 0 ) +  Z IV(t ,  t,)P(t,) 
i = 1  

- V(t, t~ + O)P(t,)(E + S~)]h(t,) (67) 

- e i= ,  ~ V(t, ti+O)P(ti)~(i)(e)-efoO(V(t's)P(s))os h(s)ds 
where 

0 ~(i)(e) = \f l(20(t)) ,  i= 1,p g~= s, ' 

From (67), making  use of  est imates (56) and  the fact that  the matr ices  
V(t, s) and a(V(t ,  s )P(s ) ) /as  are b o u n d e d  for  0 - s -  < t < - T, we obta in  

elo V(t,s)P(s)l~(s) ds <_~NTIIhII+~NsIIwlI+ N ~  ~ (68) 

for  0 - -  t -- T, e ~ (0, Co), Nj = const,  Nj > 0 ( j  = 7, 9). 
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For  the second addend  of  (65) f rom (56) we obta in  

f o' ds V(t, s)P(s)fz(s, e) <- Nloe "+1 (69) 

for  0-< t -< T, e c (0, eo), Nlo = const,  Nlo > 0. 
In order  to est imate G(t, e), we use once more  (56). We find 

IG(t, e)l <- Nil  En+l-[- N121a~ (70) 

for  0 -  < t - T ,  e ~ (0, eo), Nl l ,  N I / =  const,  Nl l ,  N12> 0. 
Finally, we est imate Iff~ making  use o f  (64), (56), (68), and (69) for  

t = T. We obta in  

l a~ _< N .  ~"+1 + eN,4 II h II + eN,5 II w I[ (71 ) 

for  e ~ (0, Co), Nj = const,  Nj > 0 ( j  = 13, 15). 
F rom (65) and (68)-(71)  we obtain  

II ~r II-< ~N1611 h II + eN1711 wll + N18e ~§ (72) 

for  w ~ T~, e ~ (0, e0), Nj = const,  N s >  0 ( j  = 16, 18). 
Analogously ,  we p rove  the inequal i ty  

II ~r ~r -< N~ II h ' -  h"ll + ~ II w ' -  w"ll (73) 

for  w', w"~T~, h ' =h ( t ,w ' , e ) ,  h"=h( t ,w" ,e ) ,  e ~ ( 0 ,  Co), N, N = c o n s t .  
F rom est imates (59), (72), and  (73) it fol lows that  for  sufficiently small  

values o f  the pa rame te r  e the opera to r  cr is a contract ive ope ra to r  in T~. 
Denote  by  u(t, e) its unique  fixed point.  Then  the funct ion (u(t, e), v(t, e) = 
h (t, u (t, e ) e ) )  is the unique  solut ion of  b o u n d a r y  value p rob l em (51 ), (52), 
(54) for  e ~ (0, e0). 

Put 8 = Ce, where the constant  C > 0 is sufficiently large but  fixed. 
F rom the first equali ty o f  (59) and f rom (72) we obta in  the est imate 

Ilu(t, e)ll<-Me "+1, I[v(t, e)ll <- Me  "+1 (74) 

F rom (74) in view of  (50) we obtain  the assert ion of  Theo rem 1. 
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