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Asymptotic Procedure for Solving Boundary Value
Problems for Singularly Perturbed Linear
Impulsive Systems

D. D. Bainov," M. A. Hekimova,' and V. M. Veliov
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A justification is given of an asymptotic method for solving a boundary value
problem for a linear singularly perturbed impulsive system of differential
equations with fast and slow variables.

1. INTRODUCTION

Singularly perturbed systems often arise in mathematical modeling due
to the presence of “parasitic” parameters such as small time constants,
masses, capacities, etc., multiplying some of the time derivatives [see, e.g.,
the survey by Kokotovi¢]. The method of the boundary-layer functions
(BLFM) (Vasileva and Butuzov, 1973) is a powerful tool for the alleviation
of the high dimensionality and the ill-conditioning of such systems. The
main aim of this paper is to show that an appropriate modification of BLFM
is applicable to singularly perturbed impulsive systems.

Impulsive differential equations represent an effective mathematical
apparatus for the investigation of real processes which during their evolution
are subject to short-time perturbations. The study of these equations began
with the work of Mil’man and Myshkis (1960) and has been extended in
various directions related to their applications in physics, biology, radio
engineering, automatic control, etc. Periodic singularly perturbed impulsive
systems have been investigated by Hekimova and Bainov (1985, 1986).

In this paper we consider a boundary value problem for a linear
singularly perturbed system containing stable and unstable “fast” subsys-
tems. The boundary conditions and the impulses (acting at fixed moments
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of time) depend linearly on the state. Problems of this type arise in the
treatment of optimal control problems for singularly perturbed systems
(without impulses) when the objective function contains extra-integral
terms. The mathematical formulation of such a problem is given in Section
2 together with its reduction to the boundary value problem studied in the
following two sections. Section 3 presents the formal asymptotic expansions
composing the solution and Section 4 is devoted to their convergence.

2. STATEMENT OF THE PROBLEM

Consider the following optimal control problem:

Zl: 0.5 Px(&)+pi, x(t:)) + 8i (0.5 S (t;)+ 51, (1))

+JT (0.5 M(t)x(2)+ m(t), x(¢))+(0.5 N(t)u(t)+n(1), u(t))) dt > min

(1)
xX=F()x+Fi()¥+ E(Hu+g (1), x(0) =x,

ey = Fy (t)x+ Fp(t) + g,(t), Y(0) =

where (x, ) eR™™™ is the state vector, ucR’ is the control parameter,
F;, g, E;, M, m, N,and n are continuous matrix- or vector-valued func-
tions, and Py, pi, S, and s, are matrices or vectors with appropriate
dimensions, i,j=1,2,k=1,1. The final time 7T, the initial conditions
(xo, o), and the moments t,, . .., 4, € (0, T], t,= T, of trajectory penalization
are fixed. Here £ is a “small” positive parameter which represents the
singular perturbation.

If the matrices P,, S;, and M(t) are nonnegatively definite and N () is
positively definite (i=1, 1, te[0, T]), then there exists a unique solution
(u(+), x(-), ¢(-)) of the above problem in the control space L}[0, T].
Moreover, this solution can be represented as

u(t)= N ()(EF0)y(1)+n(1)) (2)

where y(-) together with an appropriate function %(-) satisfies the adjoint
equation

y==Fi(0y—1 FH(07+ MOx()+m(p),  y(T)=0

(3)
ﬁ=Fi*2(t)y—% F3(t)7 F(T)=0
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and the transversality conditions
Ay(t;) = Px(t,) +p;

. o 4)
Aq(t)=e(Sy(t)+s), i=1,1

This means that y(-) and 7(-) are differentiable and satisfy (3) on each
interval (f,_,, t;), i =1, I (t,=0), and (4) at the points t;, where Af(t) denotes
the difference f(¢+0)—f(t —0). Replacing 7 by n =1/¢ and substituting
(2) in the differential equation in (1), we obtain a boundary value problem
with impulses for the optimal trajectory (x(-), ¢(+)). Using (4) for i=1 as
a terminal condition, we come to a problem of the following type:

xX=A(t)x+ B(t)y+ Ci(t)y+ D(t)n+£1(1), t# L
y=At)x+By(1)y+ Cy(t)y+ Dy(t)n+ 1), t#4

e =As()x+ Bs()y+ G()+£3(1), t#t ©)
e1) = Ay(t)x+ By(t)y + D,(t)p +£4(1), t# 1
Ay(t;) = Px(t) +p; ©)
An(t) =Sap(t:) +s;
x(0, &) = xo, #(0, ) =y
(7)

VT, £)=Prx(T)+pr, (T, €)= Sry(T)+ sy

Henceforth we suppose more generally that xeR™, yeR™, g€
R™, neR™ and all matrix- and vector-valued functions in (5)-(7) are of
appropriate dimensions. As above, t;,...,t,€(0, T), x,, ¥, are fixed initial
conditions, and £ >0 is a “small” parameter.

We shall use the following notations and assumptions.

For x=(x;,...,x,)€R? and A={a;}eR?"" we set

x| = max [x),  |Al= max 3 |a]
1=i=gq l=i=gq j=1

By C‘q[O, T] we denote the space of all g-dimensional functions w(-) such
that w(-) is continuous at each t€[0, T]\{#,..., t,} and there exist finite
w(t;+0) and w(t;,—0)=w(g),i=1,...,p. A norm in C~'q is defined by
sup{|w(1)|, t€[0, T}.

Assume that:

Al. For some n=0 the matrix-valued functions A;, B,,i=1,4, C,
i=1,3, and D, i=1,2,4,are (n+1)-times continuously differentiable
in[0, T].
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A2. The eigenvalues of the matrix C;(¢) have negative real parts, i.ec.,
Re o(C5(1)) <0, and the eigenvalues of the matrix D,(t) have positive real
parts, i.e., Re a(Dy4(t)) > 0.

A3. The functions f;(t) € &, [0, T)(j =1, 4).

A4. The matrices E+ P, E+S; (i=1, p) are nondegenerate.

Observe that if Re o(F(1))<0 and all the functions in (1) are
sufficiently smooth, then our assumptions concerning the optimal control
problem (1) imply the properties A1-A4 of the corresponding boundary
value problem (5)-(7).

Consider the homogeneous system

6, = A,(t)v,+ B,(t)v,
0= Ay(t)v,+ By(t)v, ()
Avy(t;) = Py (1)
where
Aj(1)= A1) = G(NC3 () As(1) — D(1) D3 (1) Au(t)
B;(1)=By(t)~ G(1)C5'(1)Bs(1) — D{(1) D3 (1)By(1)  (j=1,2)
Denote by V(t,s) [ V(s, s) = E] the fundamental matrix of system (8)
and write it down in the form

V(L 5) = ( Vit s) Vit S))
V21(ta S) V22( t’ S)
where V;(t, s) is an (m; X m;) matrix (i,j=1, 2).
We shall use the following assumption as well.
A5. The matrix PrVi,(T, 0) — V,5(T, 0) is nondegenerate.
We shall note that the matrix V(i, s) can be represented in the form

(v(1,5), t<s<t<t,, (i=0,p)

k+1

o(t, t.-)[ 11 (E+B)o(s, tj-l)]<E+Pk>v(tk, )

J

V(t, s)=/4

e <S=EH<L<I=1yy (k=1,p—-1; i=2,p; k<i)

\o(t, 5)(E + P)o(t, ), ha<s=4<t=t,, (i=1,p)

where 1,=0, t,., =T, P,=(3 %), and by v(t, s) we have denoted the funda-
mental matrix of the system without impulses corresponding to system (8).

In Section 4 we shall prove that problem (5)-(7) has a solution r(¢, £) =
(x(t, &), y(t, ), ¥(1, €), n(t, €)). Moreover, we shall find an approximation
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R,(t, €) of the solution such that
IR.(, 8)=r(, &)= Ce"""
The approximation R,(t, €) will be constructed in the form

R &)= T e [A()+TPr(r)+ QPr(a)],  teltytimn]  (9)
k=0

where 7. () is the solution of an appropriate lower order boundary value
problem and II{’r(-) and Q{’r(-) are the solutions of appropriate “boun-
dary layer equations” which are also lower dimensional and represented
in the “stretched” time scales

t—t =ty —

=", o=, te (b, tivy), i=0,p (10)
£ £

3. ASYMPTOTIC PRESENTATION

We shall search for a formal asymptotic representation of the solution
r(t, €) of problem (5)-(7) in the form
r(t, &) =7t &) +0Vr(r;, &)+ QVr(ay, &), E<t<t, 11)

where
Hte)= Y e*7(), 1e[0, T] (12)
k=0
MOr(r, )= ¥ *IPKx),  (i=0,p)
ﬁ:o (13)
QVr(c, e)= T *QPr(a),

where 7; and o; are given by (10).
The coefficients in the expansions (13) are called boundary functions.
On them we impose the additional condition

IPr(+0) =0,  Q’r(-0)=0  (i=0,p) (14)
Setting £ =0 in (5), we obtain the so-called reduced system
E=A(OX+B(NF+fi(r), t#y
F=A(NZ+B()F+ 1),  1#4,

U=-C3'(D[A(DX+Bs()y+£2()],  t#y4
7j==—D (N[ADF+Bs()F+fu(1)], t#4
Ay(t;) = Px(1;)+p; (16)
where we have put

L) =£) - C(OCT () - DD (O fi(1)  (j=1,2)

(15)
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The assumption AS implies the existence and uniqueness of the solution
(X(2), y(2), (1), 51(¢)) or (15), (16) satisfying the boundary conditions

X(0)=%x,, J(T)=Prx(T)+pr (17)
and the relations
AX(t)=a;, Ay(t;)=Px(t)+b; (18)

for the impulses, where a;, Xy, b;,and pr are arbitrarily fixed vectors.
Moreover, this solution can be represented as

x(1) = V(1 0)Xo+ Via(8, 0) Yo+ t[Vu(t, $)f1(s)+ Viao(t, 5)fo(s)] ds

+ Z Vll(t’ tv+0)av+ Z V12(ta tv+0)bv
o<t, <t 0<t,<t

(1t

F(t)= Vau(t, 0%+ Vo8, 0070+ | [ Vau(t, $)fi(s)+ Vio(s, s)f(s)] ds
Jo (19)

+ Z V21(ts tv+0)+ Z V22(ts tv+0)bv

§(1) = — C3H (D[ A()E(2) + By(0)5(1) + f2(1)]
(1) = — D7 ([ AL)Z(1) + By(1)7(1) + fu(1)]
where
Fo= =[PrVio(T, 0) = Voo T, 0) ] {[ PrViu(T, 0) — Vi (T, 0)1%,

+J {[PrVi(T, s) — Vi(T, S)]fl(s)

0

+[PrVioT, 5)— VT, S)]fz(s)} ds

I3
+ Y {[PrViu(T, t,+0)— Vou(T, t, +0)]a, +[PrVio(T, 1, +0)

v=1
= Voo(T, t,+0)]b,} + pr}

For the sake of convenience, we shall also use the notations
(x (¥ (A1) By(1)
z'(y)’ {_(n)’ A(‘)‘(Azm Bz(t))
_(Ci(1) Dy(v) _(As(1)  Bsy(1)
Cm‘(cz(t) Dz(o)’ 5 (’)‘(A4(t) B4(t))

() ) =) ()

A1) EM) 7 (fl(’)> F(t)=-D7'(1)F(1)

A"“(AZU) 50)  TP=\5w
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Substitute (11) into (5)-(7), representing ¢ in the coefficients of system
(1) in front of the functions II1{’r(7;) in the form t = t,+ £7; and in front of
the functions Q’r(o;) in the form t = t,, + £0,. Afterward we expand the
functions A;(t;+em), At +e0;), B(ti+er), Bt +eay) (j=1,4),
C(ti+em), Cj(ti+1 +¢&0;)(j=1,3),and I)j(ti +en), Di(tinten) (j=1,2,4)
in series by powers of ¢ and equate the coeflicients at the equal powers of
¢ (separately those depending on ¢, 7;, 7;). Thus we obtain the systems from
which we can determine the coefficients of the expansions (12), (13).

For the boundary functions for k =0 we obtain the systems

dT,‘ o dO',- (20)
diy’y

dTi B (21)

(i)
A0 _ b ()T (22)
dr;

(!)

28 _ Qi (23)
d (t)

Q A0 D (141) QP (24)

Since M1§z(0)= Hg)ﬂ(O) = Q§’2(0) = Q"¢ (0)=0, from (20), (22),
(23), in view of (14), we obtain
P 2(n) =1 n(7) = QP 2(0:) = Q"Y(a) =0 (i=0,p) (25
For the function 7o(1) = (Z(t), £o()), applying (14) and (25), we obtain
the system
Lo=B(t)z,+ F(t), t#¢ (36)
Axy(t;)=0, Ajo(t;) = Pxo(t;) + p;
with boundary conditions
Xo(0) = x,, Po(T) = Prxo(T)+pr (27)
Problem (26), (27) has a unique solution (Z,(t), £,(¢)), since it coincides
with problem (15), (17), (18) for a; =0, b, = p;, X,= X,, Pr = pr-
For the initial conditions of the functions I1’¢(7;) and Q%" n(o;) we
obtain

O6(0) == 4:(0),  THY(0)=-Ado(t)  (i=T,p) (28)
Q5" n(0) = Adje( 1) — Siv1to(tir) — s; (i=0,p-1)
(P)U(O) = ST*//o( T)—7o(T)+ 51

(29)
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Once we have solved problem (26), (27), the initial conditions (28), (29)
are completely determined.

We solve systems (21), (24) with initial conditions respectively (28),
(29) and obtain (i =0, p)

Hf)i)l/f(Ti)=eXP[C3(ti)7'i] Hg)(//(()), =0

Q(()i)"l(o'i)=eXP[D4(ti+1)0'i] fo)n(o), o;=0
Thus, all functions 7,(2), I1§(7;), and Q§’r(o;) (i =0, p) are completely
determined.
In order to find 7.(¢), IPr(7,), and QPr(o;) (i=0, p) for 1=k=n
we proceed analogously.
For the function 7.(t) = (Z.(t), {(t)) we obtain the system

=AW)5+C(O)D (Db,  t#y

(30)

- . (31)
fi=—D7 N (0)B(t)5+ D7 () {i, t# 1
Az (t;)= asci)a Ay (t;) = P (1) + b?? (32)
where we have put
af) = ~T{x(0)+ Q¥ x(0)
by = P,-Q§: x(0) -1y (0) + Q¥ y(0)
with boundary conditions
%(0) = —IPx(0)
= ) l—c (p) (p) (33)
7i(T) = Pr[%(T)+ Qi x(0)] — QiF’y(0)
For the boundary functions we find the systems
dn(!) dosz . R
=19, EI_GP@)  (=0p) (34)
dTi dU',
di? ; . : _
d—:_g=D(zf)m:)c+B(ti>na'>z+L§:>(r,-) (i=0,7) 39)

(x)
Bt D1, QP+ Bl QP2+ HY (@) (=0p)  (6)

T;

where (z =0, p)

o _k-l_S[ AW acw) o ]
Tk (’Ti) SZ()S, dr ~s—12 ( )+ ar’ Zs— 1{(7')
GY(o) = go g [" L20n) o0, rz(oy+ EE) Qi‘)s_lg(oi)]

1= 3 LB o o) + EDW gy |

1S' dtf
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[d B(tl+l)

HP(c)= % & Q. z(o+ 22 o 4 )]

s=1

s!
with initial conditions
My (0) = — i (0)
I¢(0) = = Adh(8)+ QX Vy(0)  (i=T,p)
Q¥ n(0) = Afj(tir) + I V7 (0) (37)
= Sialti(t)+QPW(0)]  (i=0,p—1)
Q' (0) = St (4 (T)+ QP W(0)) — i (T)

and the initial conditions for the functions I1{’z(r;), IP7n(7), QP y(0,),
and Q{z(0;) are appropriately chosen according to condition (14).

First we find successively the functions I1{’z(7;), Q¥z(a;), I¥n (1),
and Q¢ (a;) (i=0,p),
OPz(r) = —J T{(s) ds, Q¥z(ay) =J i G{P(s) ds (38)
o n(r) = _J exp[ D,(#)(7;— )]
X [A4(t,-)II§ci)x(s)+B4(t,-)II(') (s)+ L(l) »(s)] ds (39)

o,

Q¥Vy(a) = J l exp[ Cs(ti1) (0 —5)]

—o0

X [As(1:1) QL x(8) + Bs(1141) QL y(s) + H{D,(s)] ds

where by L} @)(s) we denoted the vector formed by the last m, components
of the vector L{(s) and by H (')l(s) that formed by the first m; components
of the vector H{(s).

Making use of (38), we solve problem (31)-(33) analogously to problem
(15), (17), (18). Thus, initial conditions (37) are completely determined and
we find the functions

I¢(7) = exp[ (1) m] T ¥(0) + Li exp[ Cs(£;)(7; = )]
AW+ B+ L] ds, n=0
Qgci)"l(O'i) = CXP[D4(ti+1)U'i]Q§ci)77(O) + J‘ i exp[ Dy(t41)(0; —s5)]

X [A,;(t,-+1)Q(")x(s) + B4(t,-+l)Q(i)y(s) + H(i) 2(5)] ds, g,=0

Thus, the coefficients of the expansions (12) and (13), (1), (),
and QY'r(a;) (i=0, p; k=0, n), are completely determined.
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From condition A2, formulas (30) and (38)-(40), by induction it follows
that there exist constants K,> 0 and « > 0 such that the inequalities
I r(7)| = Ko exp(—«T,), 7,=0 (a1)
. 41
IQg)r(Ti)ISKO exp(ka;), g,=0
hold for i =0, p, k=0, n.

Inequalities (41) imply the convergence of all improper integrals which
enter the formulas defining the boundary functions.

Thus, all functions which enter the formal expansion (12) are com-
pletely determined. In the next section we shall prove that under the
assumptions A1-A5 the partial sums of the series (12) form uniform approxi-
mations of the solution of problem (5)-(7).

4. EXISTENCE AND APPROXIMATION OF THE SOLUTION OF
2]

In this section we shall prove the following theorem.

Theorem 1. Let conditions Al1-A5 be satisfied. Then there exist con-
stants £,>0 and M such that for any ¢ € (0, g;) problem (5)-(7) has a
unique solution r(¢, ) and

[r(t, €)= Ru(1, &) < Me™™,  te[0, T] (42)
The function R, (1, £) in the above estimate is given by (9), and F.(1),
OPr(r,), and Q¥r(o;) were described in Section 2.
First consider the singularly perturbed:system
gp; = C3(t)p,+ g:(1), t# 1
Ap(t;) = Cgi)
ep,= D,(t)p,+ gx(1), t# 1
Apy(1,) = Sp,(t) + ¢’
with initial condition
p:1(0,)=p3,  poAT,8)=Srp(T)+p3 (44)

where p,eR™, p,eR™.

We shall investigate the problem of existence and estimation of the
solution p(¢, £) of the boundary value problem (43), (44) under the following
conditions (B):

B1. The matrices C5(t) and D,(t) are continuous and satisfy condition
A2 for te[0, T].

B2. The matrices E+S; (i=1, p) are nonsingular.

(43)
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B3. The functions g,(t)eé‘ma[o, T], gf(t)e émd[O, T], and c!”,
¢S (i=1, p) are arbitrary m,, m,-dimensional vectors.

Denote by Yi(t, s ¢) [Yi(s, s, ¢)=E] the fundamental matrix of
the homogeneous system gp,=Cs(t)p,,1€[0,T], and by Yy(s s, ¢)
[Yy(s, 5, €)= E] the fundamental matrix of the system eg,= D,(¢)p,,
tef0, T].

Flato and Levinson (1963) proved that if condition B1 holds, then the
matrices Y;(t,5,¢) (j=1,2) satisfy for sufficiently small values of the
parameter ¢ the inequalities

t
|Y1(tS 8)|<K16Xpl:—K—S] O<s<t=<T

(45)
t—
|Y2(t,s, 8)|5K16Xp[;<—s], O<t=s=<T
£

where ¥ >0 and K, >0 are constants.

Lemma 1. Let conditions (B) hold.

Then there exist constants £,>0 and K >0 such that for ¢ € (0, &),
the system (43) with boundary condition (44) has a unique solution
p(t,e)e C,[0, T] [p(t, &)= (g;&: 23)]. This solution satisfies the inequality

lo(t &)=< K max{|g], |p°, max |¢[} (46)

1=i=p

where

gl(t)> 0 (p(l)> () (di))
m=ms+m,, t):( , = s =\ u
e 0 gn) 2 &

Proof.- From the first equation of (43) we find p,(¢, ),

1
pl(t, 8)= Yl(t: 0, E)p(l)-l—e j Yl(t S, s)gl(s) ds+ Z Yl(t tV’ E)C(V) (47)

o<t,=t
From (45) and (47) for ||p,(t, £)|| we obtain the estimate
lo1(2, &)l = Ks max{|| ()], |p3l, max |} (48)

1=i=p

where K;>0 is a constant.
Consider the function

o, 1["
pZ(ts 6) = YZ(ty T; s)P(2)+;J- Y2(t9 S, E)gz(s) dS
T

49
- Z YZ(Z’ tva 8)[Sup1(tv)+0gy)] ( )

t<t,<

where p,(t;) (i=0, p+1) are defined by (47) and p5= Srp,(T)+p3.
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A straightforward verification shows that the function p(t, &) = (21(+ &)

obtained is a solution of problem (43), (44). Estimate (46) follows from
(45), (48), and (49). Lemma 1 is proved. W

Proof of Theorem 1. In system (5), (6) we carry out a change of the
variables by the formulas

z=u+2Z,(t, ), {=v+H,(t¢) (50)
We obtain the system
u=A(t)u+ P(t)[B(t)u+D(t)v]+ £ (¢, £), 1#t

(51)
ev=B()u+ D(t)v+£(t, &), t# 1
Auy(t;) = agi)(s), Auy(t;) = Puy(1,)+ a$’(e) (52)
Avy (1) =B (e), sz(ti)=sivl(ti)+ﬂg)(s)
where
u=(u1>’ vz(vl) (uJ'Eijsj=1, 29 UIERmss UZERm4)
Uy v,
P(t)=C)D7'(t)
St 0)= ADZ,(1, )+ (O H (1, )~ 2t E)
i1, €)= BUZ (1 )+ DO H, (1 )~ T2502)
aP(e)= T ¢ x (i)—z £"QVx ( ’)
k=0 4 k= £
a(e)=P, i e II¢Vx (—ti*ti_l) + i e 1YYy (ti _’—“‘ti—l)
= £ k=0 €
(53)
_ n k(1) ti tl+1
IEO £°Qy ;V( . )
B(li)(s)= i e TIEVy <ti‘“t,-—1) i EkQ(')(/I( i 1+1>
k=0 £ k=0

B(l)(e)_s Z Ekn(x l)lp( )+ z Skn(' 1 (t t'-—l)

k= £
_ o i — L
£ eopn (=)
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For system (51), (52) from (7) and (50) we obtain the boundary
conditions

(0, ) =pi(e),  uAT, &) = Pruy(T) + py(e)

(54)
v,(0, €) = g:(¢), 0T, £) = Srvi(T)+ g(¢)
where
ne=- £ efoPx(-2),  ateo-- I erorw(-2)
k=0 € k=0 £
pie)=Pr 3 s"m”x(T"")—i sknﬁf”y(T_"’) (55)
k=0 £ k=0 €

n T—t n T—t
@()=Sr ¥ s"nﬁg”(//( ") -3 &Py ( ”)
k=0 £ €

k=0

From relations (20)-(29), (31)-(37), (41), (53), and (55) it follows that
for sufficiently small values of the parameter the following inequalities hold:

|P(t)!SNO’ If.Z(t, E)|SN1£n+1’ t€[09 T]

t_t,'

|fi(t, €)| =< N,e” [exp(—x—)

&

t—t R
+exp<x-—-—ﬂ)}, L<t=<t,, i=0,p (56)
€

Iag)(£)|SN38n+17 |ﬁ§ci)(8)|SN4sn+l5 k=1,2s i=
|pk(8)|SN58"+l’ |qk(8)|SN68n+l’ k=132

where N; (j=0,6) are positive constants.
Consider the set

Ty ={w: we C,[0, T], | w| = 8}

where § >0 is a constant.
For we T; from Lemma 1 it follows that the system

eh=D(h+B()w+fo(t, €), t#¢
Ahl(ti)=ﬁ(1i)(5), AhZ(ti)zsihl(ti)_i_Bgi)(e)
with initial condition '

hi(0, £) = q:(2), hy(T, £) = Sph(T)+ g.(¢) (58)

(57)

has a unique solution A(t, w, e) € C~‘m[0, T].
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From relations (46) and (56) it follows that there exist constants g,> 0,
Ly>0, and L;>0 such that for £ € (0, ;) the following inequalities hold:
|h(z, w, €)]| =< Lo||w|| + L™, we T, (59)
5
Az, w', ) — h(t, w", €)| =< Lo[|w' — w"|, w,w'e Ty

Consider the operator €, associating with each function we T; the
unique solution é,w of the system

i=A(t)d+P(t)[B(t)w+D(t)h]+fi(1, &), t#E L
Aiy(t)=a{™(e),  Ady(t)= P (1)+a$’(e) (€0
satisfying the boundary condition
(0, 8) =pi(e), (T, e)=Priy(T)+py(e) (61)
Making use of the solution of problem (15), (17), (18), we write down
the solution of the boundary value problem (60), (61) in the form
C.w= J-Ol V(t, s)P(s)[B(s)w(s)+ D(s)h(s)] ds+ G(t, &) (62)

where

Gi(t, s))

G, 8)=(Gz(r £)

Gi(t, £) = Viu(1, 0)pi(e) + Vis(s, 0)ﬁ3+J‘ (V(, 5)f1(s, €)1 ds
0

+ ¥ Vau(,,+0)a(e)+ ¥ V(4 t,+0)ai’(e)  (63)

0<t,,<l o<t,<t
G2(t5 s) = V21(t, 0)p1(€) + V22(t> O)ﬁg+J (V(ta s).fl(sa 8))2 ds
0
+ Z VZl(ts tv +O)agy)(8) + Z V22( ts tv +0)agl’)(£) (64)

0<t, <t o<t, <t

d‘2’= ‘[P'rvlz(T, 0) - sz(T, 0)]_1

X {PTVU(T, 0) — V5u(T, 0)1p:(e)

+J PEV(T, s)P(s)[C(s)w(s)+ D(s)h(s)] ds+p,(e)

0

T
+J PEV(T, 5)fi(s, €) ds+§ P’*;V(T,t,+0)a(">}

0 v=1
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where by P% we have denoted the matrix (P;, —E) of dimension m,X
(m,+ m,) and by a'*’ the vector

()
ag")
From (62), taking into account that h(f, w, £) is a solution of system
(57), we obtain
t

t
bw= 8_[ V(t, e)P(s)h(s) ds-—J- V(t, s)P(s)f>(s, £) ds+ G{(t, &) (65)
0 0
where by h(t) for t=1¢, (i=1, p) we have denoted h(t;—0).
We represent the first addend in the right-hand side of (65) in the form

eJt V(t, s)P(s)h(s) ds

0

- EJ V(£ 5)P(s)h(s) ds (66)

+'_<il eJ v(s, s)P(s)h(s)+gJ V{1, s)P(s)h(s) ds

143

where 0<t; < - <t=t 1 =T.
After an integration by parts from (66) we obtain

EJ-t V{1, s)P(s)h(s) ds

=gP(t)h(t)—eV(1,0)P(0)h(0)+ i [V(, ) P(t;)
= V{1, t+0) P(t)(E + 8)1h(1) (67)

~e 3 Ve tf+0)P<t,-)B“’(s>—efwgs—))

= (0 O o~ (B(€) .
S"_(s,- 0)’ B()(E)_(B‘z”(t))’ i=Lp

From (67), making use of estimates (56) and the fact that the matrices
V(t,5) and a(V(z, s}P(s))/ds are bounded for 0=s=t= T, we obtain

h(s) ds

where

<eNi[|hl|+eNgllw|+ Noe™™  (68)

qu V(t, s)P(s)h(s) ds

0

for0=1=<T, £€(0, &), N;=const, N;>0 (j=7,9).
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For the second addend of (65) from (56) we obtain

J" V(t, s)P(s)fa(s, &) ds| = Nyoe™™ (69)

for0=t=T,e€c(0, &), Nyo=const, Njg>0.
In order to estimate G(¢, £), we use once more (56). We find

IG(t’ £)|SN118"+1+N12|172 (70)

for0=t=T, £€(0, &), Ny3, Njo=const, Ny;, N,;,>0.
Finally, we estimate |i3], making use of (64), (56), (68), and (69) for
t=T. We obtain

|ﬁg|5N13€n+1+8N14”h"+3N15”W” (71)

for £ €(0, &), N;=const, N;>0 (j=13,15).
From (65) and (68)-(71) we obtain

” <€sw”S£N16"h”+8N17HWII+N188n+2 (72)

for we T;, £ € (0, &), N;=const, N;>0 (j=16,18).
Analogously, we prove the inequality

| €w’ — €w"|| < Ne|h'— h"||+ Ne|w'— w"| (73)

for w', w'e Ts, K" =h(t,w', &), h"=h(t,w", €), e €(0, &), N, N = const.

From estimates (59), (72), and (73) it follows that for sufficiently small
values of the parameter ¢ the operator €, is a contractive operator in Tj.
Denote by u(t, £) its unique fixed point. Then the function (u(, ), v(t, &) =
h(t, u(t, €)&)) is the unique solution of boundary value problem (51), (52),
(54) for € €(0, &).

Put 8 = Ce, where the constant C > 0 is sufficiently large but fixed.
From the first equality of (59) and from (72) we obtain the estimate

lu(t, e)|| < Me" ", lo(s, &) = Me™™ (74)

From (74) in view of (50) we obtain the assertion of Theorem 1.
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